THE SYNTHESIS OF 14C-LABELED SUICIDE INACTIVATORS OF MONOAMINE OXIDASE*

Joanna S. Fowler Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973 Received April 12, 1977

SUMMARY

N-[3-(2,4-dichlorophenoxy)propyl]-N-methyl-2-propynylamine-1-14C (14C-clorgyline, la) and L-N, α -dimethyl-N-2-propynyl-1-14C-phenethylamine (14C-L deprenyl, lb) were synthesized by the Mannich reaction of 2-methyl-3-butyn-2-ol, 14C-formaldehyde, and secondary amines 3-(2,4-dichlorophenoxy)-N-methylpropylamine (2a) or L-N, α -dimethylphenethylamine (2b) followed by KOH catalyzed elimination of acetone from the respective Mannich base 3a or 3b.

Key Words: 14C-clorgyline, 14C-deprenyl, 14C-suicide enzyme inactivators

INTRODUCTION

In our studies of the metabolism of suicide inactivators (1) of the isozymes of monoamine oxidase (MAO) type A and B we required a synthetic sequence which could be used to label the methylene carbon of substituted propargylamines clorgyline (la) and L-deprenyl (lb) with isotopic carbon. We have found that the Mannich reaction using 2-methyl-3-butyn-2-ol as an acetylene precursor with formaldehyde and the appropriate secondary amine followed by KOH catalyzed elimination of acetone from the Mannich base provided a convenient synthetic route to propargylamines (2).

We report here the use of ¹⁴C-formaldehyde in this sequence to produce ¹⁴C-labeled clorgyline (la) and L-deprenyl (lb) in radiochemical yields of 33 and 28% respectively.

^{*}Research carried out at Brookhaven National Laboratory under contract with the U. S. Energy Research and Development Administration and supported by its Division of Biomedical and Environmental Research.

EXPERIMENTAL

Radioactivity determination was carried out with a Beckman Model LS200 liquid scintillation spectrometer. Efficiency corrections were made using ¹⁴C-toluene, an internal standard.

N-[3-(2,4-Dichlorophenoxy)propyl]-N-methyl-2-propynlamine-1- 14 C (14 C-1a)·HCl. To 0.24 g (0.089 mmol) of 2a·HCl (3) in 0.25 ml of H₂O was added a mixture of 0.15 ml of 14 C-formaldehyde (2.22 x 10 dpm (4), 44 mCi/mmol, New England Nuclear) and 5.4 µl (0.066 mmol) of 37% aqueous formaldehyde in 0.3 ml of H₂O. This was heated briefly to dissolve the amine salt and 4 mg of CuCl was added. The pH was adjusted to 8 with 0.1 ml of 7.5% NaHCO₃ and 8.6 µl (0.089 mmol) of 2-methyl-3-butyn-2-ol in 0.3 ml of dioxane was added. The mixture was heated (110°) with stirring in a sealed tube for 3 hrs, allowed to cool to 25° and 0.3 ml of NH₄OH (con) added. The mixture was extracted with ether, the extracts dried (K₂CO₃) and the solvent removed to yield 1.26 x 10° dpm of 3a as a pale yellow oil.

To a film of KOH (0.2 ml of 1 M KOH, lyophilized on the bottom and sides of a test tube with a vacuum adapter and heated under vacuum for 2 min at 150°) was added an ethereal solution of 3a. This was evaporated to dryness using a stream of N₂, a cold finger attached and the residue heated under vacuum (1 mm) at 150° for 1 min. The material adhering to the cold finger was dissolved in ether:hexane (1:1) and passed over a 4 x 0.5 cm silica gel column and eluted with \sim 3 ml of the same solvent. The solvent was removed, the residue dissolved in ether, treated with dry HC1 and recrystallized (CH₃OH:ether) to yield 0.49 x 10^9 dpm of 14 C- 1a (radiochemical yield = 33%) having a specific activity of 5.6 mCi/mmol. The product was dissolved in water and passed through a millipore filter (0.22 μ) and stored in the cold in solution. Radiochemical purity was determined to be > 98% by thin layer chromatography on silica gel in 2 solvents: n-BuOH:HOAc:H₂O (4:1:5), n-BuOH:HOAc:H₂O (4:1:5),

N, α -Dimethyl-N-2-propynyl-1- 14 C-phenethylamine HCl (14 C-lb). To 0.0165 g (0.089 mmol) or 2b HCl (2) in 0.1 ml of H₂0 was added 4 mg of CuCl

and a mixture of ^{14}C -formaldehyde (2.22 x 109 dpm (4), 44 mCi/mmol, New England Nuclear) and 5.4 µl (0.066 mmol) of 37% aqueous formaldehyde in 0.3 ml of ^{14}C 0. This was heated briefly, the pH adjusted to 8 with 0.1 ml of 7.5% NaHCO₃, and 8.6 µl (0.089 mmol) of 2-methyl-3-butyn-2-ol in 0.3 ml of dioxane added. The mixture was heated with stirring in a sealed tube at ^{110}C for 8 hrs and allowed to cool to ^{25}C . Ammonium hydroxide (con) (0.3 ml) was added and the reaction mixture worked up as previously described to give 1.01 x ^{10}G dpm of an oil which was pyrolyzed and worked up as described for ^{14}C - ^{12}C to give 0.41 x ^{10}G dpm (radiochemical yield 28%) of an oil which was dissolved in ether and treated with dry HCl. The product was dissolved in water and passed through a millipore filter (0.22 µ) and stored in the cold in solution. Tlc of the free base on silica gel in ether:hexane (1:1) (^{12}C = 0.65) and benzene:CCl₄ (1:1) (^{12}C = 0.35) showed that the product was radiochemically pure. The specific activity was 4.3 mCi/mmol.

ACKNOWLEDGMENTS

The author is grateful to May and Baker Ltd. for a sample of clorgyline and to Dr. J. Knoll for a sample of deprenyl. The author expresses her thanks to Richard Ehrenkaufer for helpful discussions.

REFERENCES

- 1. Abeles R.H. and Maycock A.L. Accounts of Chemical Research 9, 313 (1976).
- 2. Fowler J.S. J. Org. Chem., manuscript in press.
- May and Baker Ltd. Belg. 626,725, July 1, 1963; Brit. Appl. Jan. 4,
 Mar. 26, 1962; Chem. Abstr., 60, P10602c (1964).
- 4. Assay of this [14C]-formaldehyde by forming a derivative with 5,5-dimethyl-1,3-cyclohexanedione showed that 62-67% of the radioactivity was in the chemical form of formaldehyde.